Optimization for Brain Activity Monitoring with near Infrared Light in a Four-layered Model of the Human Head
نویسندگان
چکیده
We describe a four-layered model for near infrared light propagation in a human head based on the Monte Carlo method. With the use of three-dimensional voxel-based media discretization, photon migration in the brain is analyzed by both the time-of-flight measurement and the spatial sensitivity profile. In the measurement of brain activity, the selection of light wavelength and the distance between the source and the detector have a great influence on the detected signal. In this study, we compare the detected signals from the detectors with different source-detector spacing at wavelengths of 690 nm, 800 nm and 1300 nm, and find that in our model, the wavelength of 1300 nm is more appropriate for the measurement of brain activity because the signals at 1300 nm get better detection sensitivity and spatial resolution. Source-detector spacing is also optimized. Received 2 April 2013, Accepted 10 May 2013, Scheduled 4 June 2013 * Corresponding author: Sailing He ([email protected]). † These authors contribute equally to this study. 278 Guo, Cai, and He
منابع مشابه
Quantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model
Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...
متن کاملModeling Time Resolved Light Propagation Inside a Realistic Human Head Model
Background: Near infrared spectroscopy imaging is one of the new techniques used for investigating structural and functionality of different body tissues. This is done by injecting light into the medium and measuring the photon intensity at the surface of the tissue.Method: In this paper the different medical applications, various imaging and simulation techniques of NIRS imaging is described. ...
متن کاملTheoretical and experimental investigation of near-infrared light propagation in a model of the adult head.
Near-infrared light propagation in various models of the adult head is analyzed by both time-of-flight measurements and mathematical prediction. The models consist of three- or four-layered slabs, the latter incorporating a clear cerebrospinal fluid (CSF) layer. The most sophisticated model also incorporates slots that imitate sulci on the brain surface. For each model, the experimentally measu...
متن کاملChange of Hemoglobin Concentration with nano particles can predict breast cancer using near infrared source?
Introduction: Early detection and treatment of breast cancer may be helping to save the lives of patients. Many new techniques have been urban to detect breast cancer. One of them is the use of nano-particles for accuracy and early diagnosis after photo transfer. In this study, rod gold nano particles was used according their ability to change light source transfer intensity. ...
متن کاملOptical Imaging of the Motor Cortex in the Brain in Order to Determine the Direction of the Hand Movements Using Functional Near-Infrared Spectroscopy (fNIRS)
Introduction: In recent years, optical imaging has attracted a lot of attention from scholars as a non- aggressive, efficient method for evaluating the activities of the motor cortex in the brain. Functional near-infrared spectroscopy (fNIRS (is a tool showing the hemodynamic changes in a cortical area of the brain according to optical principles. The present study has been de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013